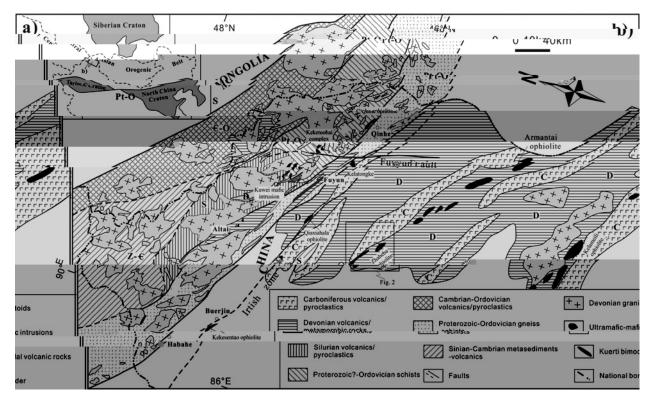

Geol. Mag. 154 (3), 2017, pp. 419–440. Cambridge University Press 2016 10.101 / 0016 56 16000042

(Received 1 2015 accepted a a 2016 first published online 1 2016)

ac ac e e e aea e e a e e a aa e e e e e e aea e e ea e 2 e e e e () e a e a ea e e ea e e a e. e a e ae aa e ea a e a e e aea e a e $a \sim 45$ a e e a e e e e e e a ~ 400 a. e a e e e a e e e e e. e e a e aa eee e a aea a e e e e е. a e e e eea a ε (t) (13 20) a a e δ^1 (+5.3 %) a e e e ae a e . . ae e a a e e a e ee a e . e. e e a a a e ac a c aa e acaaca ee e e 2 2 -eae e a a e e e e a a a e a / e e aa 2 ee e ae a e e e е, e aea a ea e e e e e a ee eea ea ea ae, a- ea ea e e e a ea. e ea e e e ea a,a e e ea e ea ee e a e aea a a e e e. ae, e e a e ea е . e e a e 2 e 2 e e е. e - 2 e

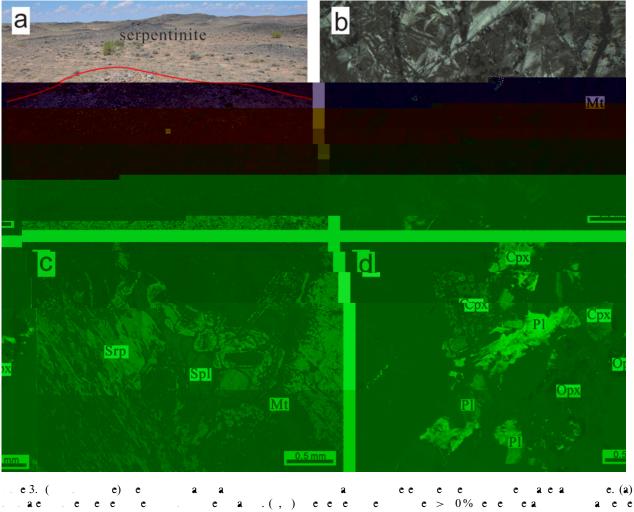

e , aca c, - c,ac c, c a a .c c (), , ...acac.

1. I c

e ee e . e,a e a e ae e eea e a e a - e e e a a e a et al. 200 e & e, 200 (e. . e a a et al. 2012 a *et al.* 2012, 2013 **a a** a a a *et al.* 2013), a **a** a e e ea a e, e ea e a 2 e e e e *et al.* 200 e e (_ , 1 a et al. 2 200 a). a a e a ee e e e . e eee-. e e (e a , 1 e a , 1 ,1 3 a a e e et al. 2000 e & e, 2003 a et al. 200 ea e, 2014). e & e (2011) a aee е, e e a e a a ea e, . a- . . e e, (), a a a a e a. _ , ea e (2014) e _ eee e e e

e , .e. e a ea e e e e e. ea e e e e e, ea e e e e e e e e a e. 2 -2 ee.

a e e e e a e e e e e a a e e (), e a e a e a e a e e & a, 1 3 a (e . ö , 🛛 a a & e, 2000 e et al. 2002 a et al. 2004, 200 a (. . 1a). ea e e e e a e , **a** e e ----e a e (a et al. 200 a,b e е, , 2012). ea e a , e & a a e , e e e e e a e acec c c e e a e ea , , e ea e , . e aaaa e aea a a, a , 1 3 **a** et al. 2003 **a** et al. **a** . 2003 a et al. 200 a) (... 1). a a e ac ce a c c c c e, e e-, e a ae a . , e e


e a e e a e ce cae e e ,aca ce e e e e e a, e a e e (1) e e ... e a e e e eaca (2) e e e a e ee-ea e a e.

2. R a , 🔽 a a a

e aea e e e e e e e e e e a e a a e е, e a e e 2 1, e (e e e, ae, 2). e e a e. ae e e e . 2 . e ac cc. c eea e ae e ee e a e e a ea 15 . a e е. ee-2 e e e . e e e e e e a e.e.e.(. 2, ee ae). e 1 e 2 2 5 e a e **a** 1 e ee eee e. . eeaa eee ...a e eee e. eee e ee

e > 0% e e e, e aee e (... 3,). a e e e e e a a e e e e e e a e ee a de adre (e. . *et al.* 2013). e e e e - e . e a a e e e a a e (40 0%) a e e (30 50%) a e a e e e (5 10%) a a a e (... 3). e e a e e ea .ee .ae 2 e e a ae e . ae e a 2 e e a ee e e aea e e a e e e a e e e a e e a a e e a e e e e a e a a e) a () a С. e e 2 a et al. 2006). e a)(__ e a e a e e e e e e a 2 2 e e e a a. e e ee e a e a e e (ea . 2). e e e ee, e ea. aa e ee e e a a e e e e e a e aea e e aa ea-, **1** 3). (e e a 2

e e e.() e e a e e. e e e 2 e a a e, e e e e e e e. a a e e

a a e, a e e a aaaee e ae — e e, e,

3. A a ca c

3.a. Z c U–Pb a a H – a a

 ee
 eaae
 a
 a
 a
 e

 a
 e(2013
 02,46° 33 2
 , °2 36
)
 e

 e
 a
 e
 a
 e
 e
 e

 a
 e(2013
 02,46° 33 2
 , °2 36
)
 e

 e
 a
 a
 e
 e
 e
 a

 a
 e
 a
 e
 e
 e
 a
 e

 a
 e
 a
 e
 e
 a
 e
 a
 e

 a
 e
 a
 e
 e
 a
 e
 a
 e

 a
 a
 c
 e
 a
 a
 e
 a
 e

 a
 a
 c
 e
 a
 a
 e
 e
 a

 a
 a
 c
 e
 a
 a
 e
 a
 a

 a
 a
 e
 c
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a

3.b. M a a a

3.c. W - c a a

4. A a ca

4.a. Z c U–Pb a

e a a e a e a e a a 100 $150\,\mu$ a a e a a a 1.1 21. a e, e a e a a, e a e a e a a a (ee e ...4a). a a e e e a e (22 123) a (5) e / a a 0.4 0. e - e e a a e 30 e e e e a a e e e a a e 4 5. ± 2.5 a

a e l. e	e a	e e e	e,aea	aa ca	aca c	e					
a e e	2013 01-1	2013 01-3	20132 01-4	2013 01-5	2013 01-6	2013 01-	2013 01-	2013 01 1	2013 01 2	2013 01 4	
					Major elements	5 (%)					
2	3.0	4.20	3.41	3.62	3.22	3.2	3.05	4.22	46.4	51.2	
2	0.05	0.20	0.05	0.05	0.04	0.05	0.04	0.14	0.12	0.2	
2 3	0.61	1.6	1.04	0.6	0. 0	0.4	0. 0	1.2	1.64	1.33	
e _{2 3}	.44	4.6		.36	.5	.16	. 4	3.6	3.24	3.	
-2 5	0.0	0.10	0.11	0.11	0.11	0.0	0.11	0.0	0.0	0.0	
	3.21	24.5	3.2	3.	3.0	3.31	3.44	10.04	.03	5.	

a e l		e
-------	--	---

	0.005	0.064	0.00	0.005	0.00	0.003	0.003	0.051	0.044	0.222
	0.021	0.34	0.044	0.042	0.0 2	0.031	0.033	0.310	0.25	1.450
	0.004	0.04	0.00	0.00	0.011	0.005	0.005	0.04	0.043	0.21
	0.011	0.232	0.036	0.044	0.012	0.034	0.00	0.123	0.0 0	0. 3
	0.0 0	0.036	0.03	0.03	0.06	0.026	0.025	0.046	0.031	0.06
	0.26	1. 10	6.600	1. 0	0. 3	0.233	1.150	1.5 0	0.516	0.1 5
	0.406	0.0 2	0.12	0.112	0.0	0.1	0.054	0.16	0.1 1	0.6 5
	0.046	0.034	0.014	0.02	0.050	0.030	0.010	0.050	0.02	0.130
	0.1 1	0.144	0.203	0.364	0.042	0.0 4	0.0	0.066	0.042	0.0 3
e	2013 01 5	2013 01 6	2013 01	2013 01	2013 01	2013 03 2	2013 03 3	2013 03 4	2013 03 5	2013 01 3
e			(1)	(1)	(1)	(1)	(1)	(1)	(1)	(2)
		4.5		52.1	Major elements		50.54	50.50	51.00	50.0
² 2	4.1	45.	4.	53.1	51. 1	50.40	50.54	50.52	51.22	52.3
2	0.34	0.15	1.40	1.24	1.31	1. 0	1.63	1.31	1.1	0.33
3	1.	1.5	16.5	16.1	15. 3	15.	16. 6	15.55	15.4	1 .61
3	4.52	3.34	•	.11	.43	.0	.50	.42	. 2	3.44
	0.0	0.0	0.11	0.10	0.11	0.13	0.11	0.14	0.12	0.0
	6.	.42	4. 0	4.2	4.41	5.	3.2	6.06	.14	4.
	11.03	12.61	6.22	5.5	6.3	6.5	4.52	.4	.26	. 0
	4. 6	.3	. 2	.3	.00	4.52	.31	4. 0	4.0	.11
	0.13	0.11	0.3	0.31	0.42	2.04	0.33	1.2	2.03	0.1
5	0.04	0.02	0.62	0.62	0.65	0.4	0.6	0.4	0.44	0.04
	3. 2	3.26	4.24	2.54	2. 3	2.2	5.14	2.65	1. 3	2.
	. 5	. 2	. 6	. 0	.4	.40	. 1	.6	.6	. 1
	4.	.4	.11	. 0	.42	6.56	.64	6.0	6.11	.2
#	5	1	55	54	54	56	41	56	64	4
					Trace elements (
	.0	4. 5	1.16	1.12	1.4	.0	40.4	5.2	6. 2	5.1
	0.22	0.135	1.2 4	1.6 3	1.316	1. 53	1.034	1.100	0.5 5	0.62
	25.0	23.	1.6	1.5	1.5	.5	1.2	25.2	1.	1 .0
	11	3.	1 6	166	1 2	22	22	254	1	5.
	34.	163	60.5	62.6	64.1	116	1.	0.	203	23.
	24.2	21.6	26.	23.6	24.6	2.	2.5	2.0	2.0	16.4
	4.	1 5	63.6	50.	51.4	6.	2.	5.3	132	1.1

a e l. e

a	e	2013	01 5	2013	01 6	2013	01	2013	01	2013	01	2013	03 2	2013	03 3	2013	03 4	2013	03 5	2013	01 3
	e						(1)		(1)	(1)	((1)		(1)	(1)	(1)	((2)
a		3.		1.	.20	3	.60	46	. 0	4	.30	23	3.40	43	3.00		.20	32	. 0	6	.56

a e l. e

a e	2013 01 11	2013 02 1	2013 02 2	2013 03 1	2013 03 6	2013 01 10	04 06	04 24	04 2	03 1
e	(2)	(2)	(2)	(1) Trace eleme	(1)	(2)	(1)	(1)	(1)	(1)
	1.4	36.	42.4	26.0	32.4	1.	/	/	/	/
e	0.3 5	0.153	0.35	1.1	0. 4	0.46	/	1	/	,
C	32.5	33.2	34.5	25.1	26.3	32.1	13.4	20.5	1.	20.3
	1 4	203	21	33	341	1 5	144	1 4	214	265
	56.5	44.2	4.	1.	22.2	53.	15	162	214	265
	34.	3.5	3.3	23.1	22.2	33.	20.6	30.	2.	203
	66.4	4.6	6.4	25.4	24.	66.6	.1	114	5.5	.02
	6.4	236.4	256.	205.4	20.	114.20	.1	/	5.5	.02
	4.0	44.1	4.0	4.	103	44.1	/	1	/	,
2	12.0	11.1	11.2	4. 14.	13.6	12.0	/	1	/	,
a	0.5	1.420	1.0 0	3.130	3.2 0	0.5 3	4.	1 .1	22.0	1 .2
	0.5	1 50	5	2 0	24	6 6	ч. 1	31	111	1.2
	13.0	13.0	13.2	21.1	22.	12.5	13.2	13.2	14.	20.1
	54.	42.3	41.5	144	154	52.	243	133	164	151
	1.2	0. 4	0. 55	11.315	11. 5	1.25	20.2	133	21.	12.2
	0.025	0.030	0.02	0.051	0.052	0.02	20.2	12.	21.	12.2
	0.3 1	0.050	0.32	1.560	1.450	0.360	,	1	,	,
	0.2	1. 20	1.030	0.365	0.406	0.336	,	1	,	,
a	11	3 2	346	25	50	4.3	,	1	,	,
a 2	10. 0	. 40	.610	26.40	26. 0	10.50	30.6	32.2	40.1	26.4
e	23.00	1.0	1.40	51.50	54. 0	22.30	5.	62.	2.3	52.5
C	2. 0	2.520	2.510	5. 50	6.1 0	2.6 0	6.	. 4	10.5	6.4
	2. 0 11. 0	11. 0	11.60	22.30	24.30	11.60	2.5	31.2	43.1	24.4
	2.540	2. 00	2.6 0	4.4 0	4. 00	2.3 0	4.5	5.2	6.	4. 5
	0. 6	0. 1	0. 0	1.163	1.25	0. 3	1.45	1.5	2.0	1.03
	2.4 0	2. 13	2. 54	4.14	4.46	2.522	3.56	4.01	5.35	4.23
	0.3 6	0.3	0.3	0.612	0.660	0.3 4	0.4	0.54	0.64	0.63
	2.1 0	2.150	2.220	3.420	3.6 0	2.130	2.5	2.	3.24	3. 5
	0.46	0.446	0.444	0. 2	0. 5	0.46	0.4	0.52	0.5	0.
	1.350	1.230	1.240	2.120	2.2 0	1.310	1.32	1.3	1.45	2.25
	0.1 0	0.16	0.1 5	0.304	0.32	0.1 4	0.1	0.2	0.2	0.34
	1.210	1.050	1.120	1. 60	2.110	1.210	1.25	1.23	1.24	2.13
	0.1 4	0.164	0.165	0.2 1	0.323	0.1 3	0.20	0.1	0.1	0.34
	1.3 0	0.104	1.040	3.2 0	3.510	1.460	5.3	3.2	4.16	3. 2
2	0.0 4	0.062	0.051	0.5	0.644	0.0	1.35	0.6	1.16	0.6
a	0.0 4 0.151	2.0	1.50	2. 5	1.	0.0	1.55	0.0	1.10	0.0
	0.131	0.206	0.200	45.20	35.10	0.33	.13	.0	4.1	21.06
	1.0	0.200	0.200	. 60	.2 0	1. 0	4.50	2.63	3.20	.41
	0.500	0.304	0.302	2. 30	3.4 0	0.501	4.50	0.6	1.46	2.5
	0.300	0.304	0.502	2. 50	5.4 0	0.301	1.	0.0	1.40	2.3

e e e e a aa aa ae e / e ee . aa a e 04 06, 04 26, 04 2 a 04 1 ae *et al. (200 a).*

. .

a e 2.	e aa	e acaaca	
a c c	() () ⁶	$^{\prime}_{6}$ $^{\prime}(1\sigma)$ $^{\prime}_{6}$ $^{\prime})$ $^{\prime}($ $^{\prime})$	$(\) \ \ \ \ \ \ \ \ \ \ \ \ $
2013 01 3 a a (2013 01 10 a a (2013 03 1 a a (2013 03 2 a a (2013 03 2 a a (2013 03 3 a a (2013 03 3 a a (2013 03 4 a a (1) 3.13 2 0 0.0335 1) 2. 1320 0.0063 1) .06 516 0.0452	0. 06324(20) 0. 06133 4.4 0. 042 (20) 0. 04255 4. 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ϵ (t) = 10000((¹⁴³ / ¹⁴⁴) e a a e e e e e e) $(t)/(^{143})/^{144}$) $(t)-$ 401 a .	1) ϵ (<i>t</i>) a (/ ⁶) a e	caa cacaacaac
²⁰⁶ Ph/ ²³⁸ U		Age=485.8+2.5 Ma MSWD=3.1 N=27 550 450 500 8490 500 8490 500 8490 500 8490 500 8490 500 8490 840 840 840 840 840 840 840 840 840 84	

= 2 , (. . 4a = 3.1). e / 1 3. ae a a e ea--. e, e **e** 4 e a e . e ± 4 a a e a e e a e e . 1(1) 0% ae a e a e , a e (a et al. 2003). a aea , a e a a a , e a eae a ae a e a e a **a** a a. e e . . (2)e . e , a 100 200 μ e a a

e e caa e ee e e **e** 2 e e, e a e. e e e eae a. . 450 a 500 aa ae e e e . е e e 1 ae ae e e ca a c a e 235 ae, eeaaes ee aaa e a e = 1.) (ee e e a e 401.4 ± 1.6 a (e ²⁰⁶ e ...4), ...e e e , **1** 3). ea ae(a

4.b. M a c

4.b.1. Spinel composition

e a e eee e a ae100 300μ a . e .3). (e. eea acaae aa ae. 4**aaaea** ,// ...**a.a** .e. ./.e.) e ae _{2 3}, **e a** 2 3 a e, aae , a e. 2 e ea e a ee a e

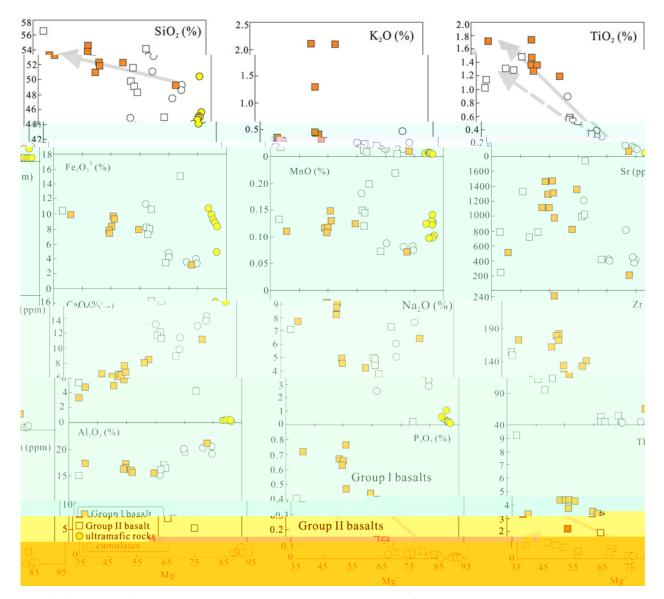
 a e .(100 / (+))

 44
 60 a .(100 / (+ e))

 25
 61. e a a e
 ae a e a 44 60 a . C e e a e a e e / e a a / - a a e (*et al.* 2010). e e e e a ace ce () ae e e e a e e e a e e a e e e (a *et al.* 2013).

4.b.2. Pyroxene compositions

e ee eaea a a a еел (= 4 6). e e e ace 2 a 0.5%) a e e a a a e (e . e (e a 0.5%) a ae ee a la e a e 5 a a e a .//. a. e . acac c c a 41 4 . , 46 55 . **a** 1 (....**5a).** e -a a e -e a e ea e e 2 3, 2 **a** 2 e 2 (.5,).

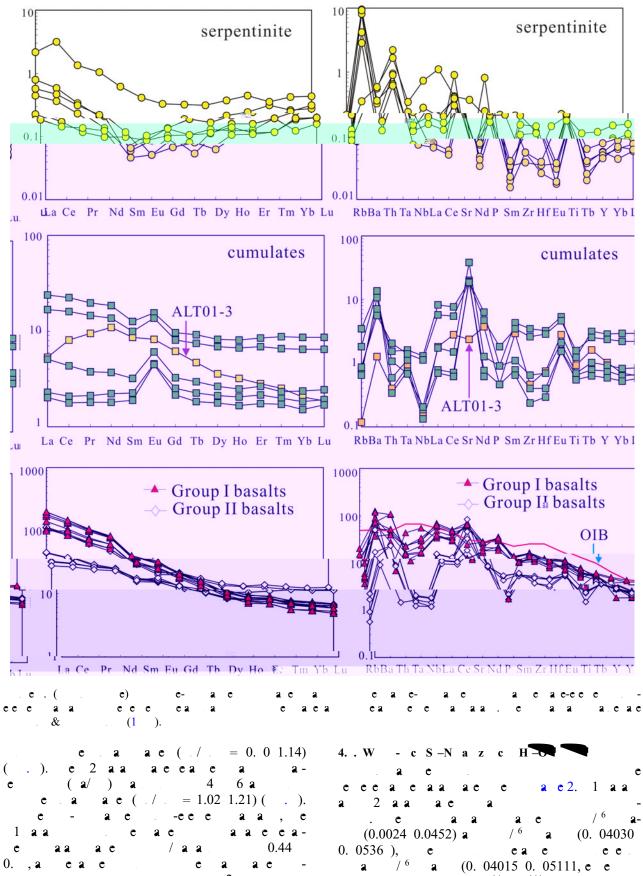

4.c. W - c a c

4.c.1. Serpentinites and cumulates

 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c

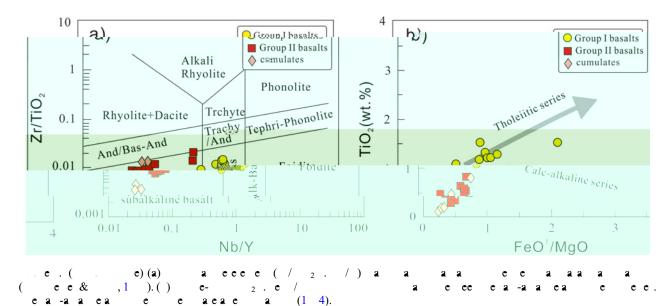
a e a e e a e (3 103) a (5) (a e 1). e (> 12%) $a_2, 2 a a e (> 12\%)$ e a a e a a e e e a e a ee e (a, a a)a e e a e e e e e () (e. . , a). cc, ccc ac c-, ₂ ₃, **e**₂ ₃ **a** 2, **e** ee a e eeea e a a c a . . . C e ee ee e a e e . e e ee.eee eaee a a e e a ee e () a . - e - e, ee e () e (<u>a</u> e1). e e, e e - a e e- a e a e), a eale a e e e e (ca e, 2014 e e e e a e a e a e a e - & a e .,1).

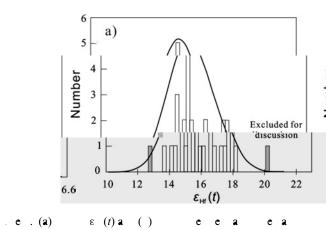
e 6. (e) a e a a e a a a e a e (2, **a**₂ $_2, e_2 _3,$. 2, 2 3, , e e et al. 200 a a e a e a eee).)(a e a e a, ,

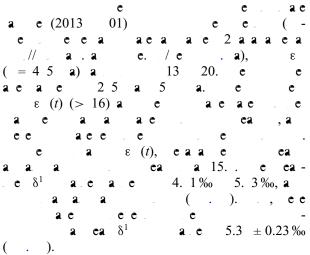

e ee e a e e e e e e 2 e (. <mark>6</mark>). e a e 2 e a a e 5 e a 41 , a a e e ea e = 1.3 2.) a) e e ((a/) ($= 1.1 \ 2.2$). e e a e / a (e 2013 01-3 a a e a e . e e e ee e e e e a e e e e - e e e-) a e (a e a eee e aae e e a), a e a e a a / a = 0.2 0.4) a (2 2 e e e 2 e e a a e a, a 2 2

4.c.2. Basalts

e a a a a e a a a e ₂ a 43.15% 5.65% (e a 52%,


e 1). e e a 2 2 a e 2 еее e e e 2 e e e e 2 2 2 a a e e e a -2). a e 1 (1) 2 (2 e 2 e e 2 C e a ee _ a e 1 a 2 e a) e e e). e e / 2 a (2 . e a a 2 e \mathbf{e}_2 2 2, 2, 3 5, ea e a e ea e 2 e a 3 2 2 e ea e 1 a a e . a ea e e ea 2 2 5, 2, a . 6). (

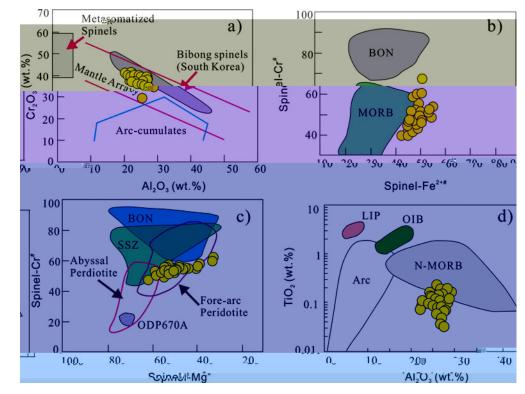

a a e 1 a e e a e a _ 124 205 2 e e e **a** e 50 60 1 a a a a a 10 a acecae (e ee a/ e 20) a 30 (a eae ea e



e e e e e e e aa e e a e 0.11). e e e e e e .).

a e¹⁴ /144 2013 03 1). e a ee e 143 /144 0.0 0.13 4 **a** a e ee 0.512 0 a 0.512 3 a ea 3 (*t*) a . e +6.3+ .5 (e e 2013 03 1 a +1.).

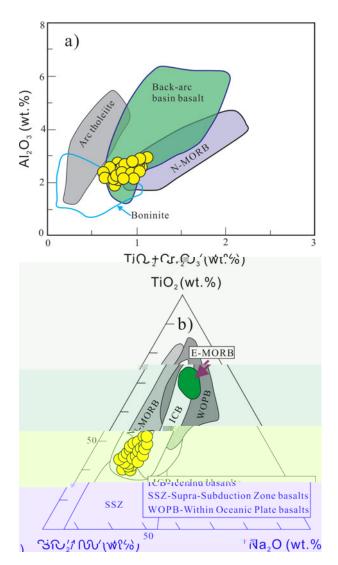
 ~ 400 a e a a e e 1.4 .2 3 (t)e 2 e a e a e ee 2 0 e e 2 6 2 e-2 6 20 2 e e 2 C e 2 e e e a a e e et al. a e (200).


6 - b) 5 Number 4 3 2 1 0 5.0 5.4 4.2 4.6 5.8 6.2 $\delta^{18}O$ e a e. e

5.

5.a. T a 🗖 Zaba

e 2 C C ae e a a e e e Δ a 2 e e a С 401 а. e e e 2 e e e a 2 e e e e $(503 \pm$ ea e e e e (416 ± 3) e e et al. e 2 2 e e (al. 200 b, 2012 2 et . 1). e ee (401 a) a e 6 e a e (4 a) e e e e) a e ea 2 , e e 2 e 2 e e 2 e e e e a e e a e. e e a a a e e e e 3). e (2 , 1 e . e

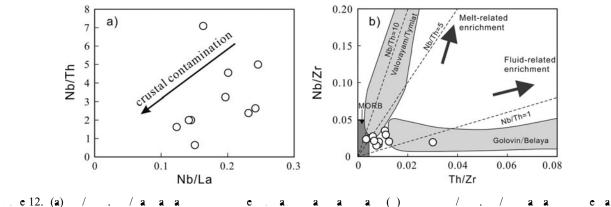

e 2 e e e ea e a a e e e a e . 1), e ee e (e a e , .e. 2 e 2 a e 2 2

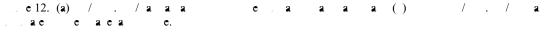
e 10. (%) **a a** . (**a**) _{2 3} **e** 2 3 (e) a e a 2 e (2 $(100 e^{2+}/(e^{2+}+))$ e^{2+} , 2000). () .(100 /(+)) e & e e aea e (a e . (100 **a** e & e e , 2001). () . (100 /(+ . /(1 4)) e . . + e)) e e e a e e et al. 1 5). () ₂ e (a e e aea e(a e - 23 a e a e a e & e e, 2001). 2 e e a a e a a . ea 2-

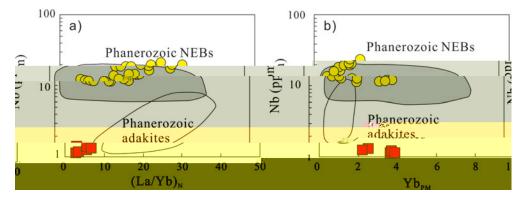
a e (500 4 0 a) (a et al. 2003 et al. 2015), e e a ea e a e (430 400 a) (a et al. 200 b, 2014 a e e e e e e) a e a e e e e (3 0 350 a) (a et al. 2003 et al. 2006).

5.b. O			a c	8								
. e	. a	a	a e		e a	-						
e	e e a a	ea	a e .	ee a	e							
a	a e	a		. e	a	e						
e a	(e e a	,	&	e, 2002							
et al. 2	2010 () 5.	62 360	a . (e)1 . (.4(e)2	(-)e)2	(. (()1 .1.1()	2 (-)	0-360.5(e.)	31	-4	4

e 11. (e) (a) 2 3 +2 2 2 2/100() 2 **a**2 a 2 e a e e e a e a e a e a e. e e 2 ee a e e a 2 ee e 2 2 e


C ae e a e e e e 2 e e e) e e e e e eac е, e e e e e C a ee e 2 e ee. e e e e e C -5 e e ae e e e + e 2 3 2 2 3 a a e e C e e 2 e 2 ea ee ₂/100 a a . 11a). (e 2 a e e e e a e ee e e a . 11). e e e (a _ ae e 2 a a e a e e e е. e e (). e a C e a 2 e 2 2

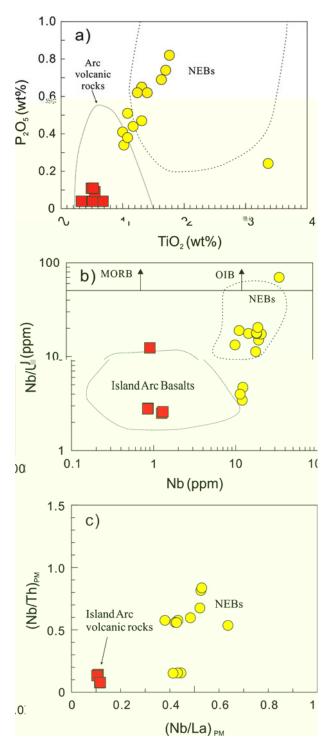

e e e ee e e e e e a . 12a), (e ee е. e a a e 2 2 e e C e eae e C e a e e. C ae - e a e e e e ea-12). e e e e. e e e e e 2 2 eae e 2 eae et al. (2002) a e e a e a ea a e e e e e e a C e e e e a e e e) 2 e e ee e e e e 2 e e ea e e C - e a e e a 2


5.c. P D a bara

e e e e a a a e e 1 **a** e a e .e. a 2. 1 (11 24 e a a a e), $_{2}$ $_{5}$ (0.4 0.6%) **a** e 15 2-60) a (11 15, e a a e(a/ a a . е, e e ae a) (e a , a & (, 2001) (& . 13). e e e ae a 2 e ee e e e 2 (1) **a** e e e a ea e e e a e e & e e e (e. a 2 2002) (2) e a a e e a e a & a e e a e a (& <u>6</u>). 2 e a 3 **a** et al. 1 1 1 e e ae e 2 e 2 C 2 e e e e 1 a

e e a e a e e e e e e e e e a & ,200 e et al. a 2 e (a / 6 2011). 1 ee, e ae a e (0. 04120 0. 06133) a (t)a.e a 3 + .5). e a e (+1)e e e e (3.44 20.4) e ae / 2 e (1.51 2.54) a e **a**/ a (e. . & e 1 **6**). e e e e 2 e, e -. e 2 2 e e. e e e e a e 1 ae e e e e e e e a 2 a e (a a et al. a e e e a **6**). e eae 6 e e. 1 e a e C eee e 2 e e ea e ea e e eeaea e (& e e -e 2000). e e 2 a e e e e e a e e e e (& 2 **6**). et al. a et al. 2 (200) e e e a a a e a e e

с. а. с 1 a e a 2 .5) **a** $(/ ^{6})$ (0. 04120 0. 06133) ε (*t*) (1. a.e, ac a c . c a a ee. (<u>a e2</u>). e e a e e e $(-/^{6})$ **a** ϵ (t) **a** e **a** a e 2 e ee a a a e e 1 2 e 2 2 e 2 2 e a e a a ea e e e e e 2 2 e e e e e a 2 e e e ea e e e a . e e e e 2 aca.


2 a a ae eae 2 e 2, / a (< 0.3),/ a e .), e ea e e a e e e a - e ea e e a e e e 2 e , 2002). & a e, 1 1 e a ae ea. c 2 a a a e (/) . 2 a a a e (/) . 2 a a a e (/) a 2 a a e e . e 2 (0. 1.0), (a/ a) (0.1 0.2) **a** / 2 e a e . e e 2 a a e aa e . eae a & (**, 1** 6). ae e e 2 a a 1 a e e 2 2 5 /) . 14). a ((2 a e 1 2 e e e a a 2

. 14). (. e 2 2 2 e C 2 e e a e ea 1 a 2 e a a ae e e e е. ea e a e a e aea e 2 e e e e e e e e

5.. I ca Paaz cacc II Ja

e ca e . ee eeae e . a , e (416 a ... et al. 2014 e ea e .e. a e a a a e (503 et al. 2015), **a** et al. 2003 et al. 2015 .) 4 5 2 e (400 a) (. . 1). e ace e e e a e e (*et al.* 2014), e 2 a a ea e e e e ea ca c a . eae e

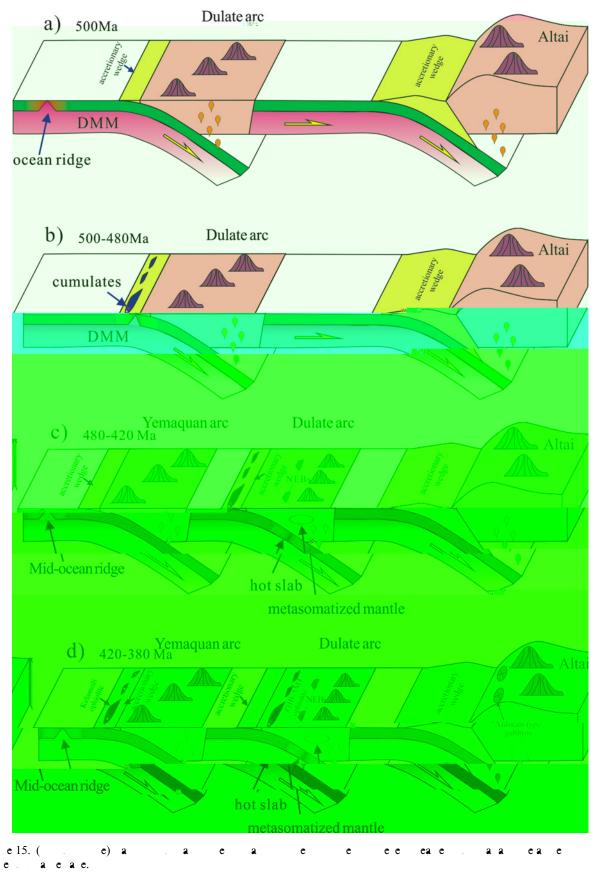
e ea e e e e e 2 e e a e e e e a ea e e e e e e ea e e e, e a 2 ea , a ee - ea (et al. 200, 200 a,b a et al. 200 a). e and a co e . a ... a a e e e a a- ca a (a et al. 200 b).eee e a

e) (a) 2 e 14. (e 5 2)() e / e (a -e e a e a a & (1 2) a) a e e a 5), e *et al.* (1 e е.

e e a e e e 2 2 e e 2 e e 2 2 e e ea ae e e. e

e et al. (2015) e e a a e e a e e a e e 400 3 0 a a e e e a a

е. e eae a e e e e e a e ae a 460 3 5 **a** c. 400 2 a (a a ea et al. 2006, 200 *et al.* 200 **a** et al. 200 et al. 200, 200 *et al.* 2012 a e et al. 2015). e e a e a e ca. e,a e-2


e e a e e e e e-2 e e e e e & a e e 2002 *et al.* 200). e e 2 e a 2 e a e a e e e e a e e e (e et al. 2015).

5.), e (ee e e e _ 2 e e e e e e ea ea e a ea. e e a e a e e 15). et al. (200, 200 b) e e e e e e e a e e e e 2 C e 2 e e e e e e a e *et al.* 200). e (e e e e e e ee 2 e e 2 e e, 1 e e & 1 e (e e e а, ,200 a & a *et al.* **2013**). a a e e e e e

. 15). e e ea e 2 e a e ((1)e (c. 500 a), e a ae a e e ea e ea a e e e e **a**ea e ae 2 e a-2 e e e e 15ae e e 2 e e 2 a e

(2)e (500 4 0 a). e e e a ea e e a a e a e e e . 15). e. e a e e a e e e a -2 C a ae e e e a

(3) e (4 0 a ae e (45 420 et al. a), 2 e -2015) e e 2 ea e e a a e a 2 ·e (440)et al. 2014) 2 e e e e e e e e C 2 a e C e e e ea e a a 15). e (e a e, a e a e e e a a e2 a е.

(4) e e a e e a e e a e -a e a e (420 3 0 a) (et al. 2014 a et al. 2015). e e e a- ca ., e 1 aa ()a 2 aa e.e e a a e e e e e a -2 ecae a ea a-eae de ea a a a a a e . e a eale,a al eale e e a ea e e (400 3 0 a). e e ea e e e ae ae . e, ea e ca e . . . a, a e e e 🗉 a a a e e е. caca c. e a a a - c aacce a ea e ee a e e a ese e suaee a a e.

6. C

(1) e la caca e a e a~45 a, eeaa a ca c . c a c. 400 a. ., e a a e e e a е. . ae . a e aa ae a e e aea caca aa c. ccac aa c ca a c cac a aa c c e. e a a e e a a e e e a e aeee (2) e ae e a e a е . e e. e. a a e e a e eeee e laa e ee e - ca c. a e a a e e a e -...e a e a e a a a e a - e.

(3) e a e a a a e a e e e a 0.2 2 e e . e a e a e e a e . e **a** . e e - a e e ea e e a a e e a a-ca a c a e e a ca. c ca c ...a a ac aca c e

e, a ea , a- ea 2 2 e ee - ea

Ac a e a e e a e e ea a e ae a a e aea caa c. cac c ae. ea a e e e eaaee aee.a a e aa a e a a 305 e e a (2011 06 03-01).

S a a a

e cea aca a c, cac // . . /10.101 / 0016 56 16000042.

R

, 1 4. aa e a e e e e e a ea e e e a e e a . Chemical Geology **113**, 1 1 204. , . . & , . . 2001. e a e e e a a a a a a Journal of Petrology 42, 22 302.

, · ·, , · ·, a e a a . Earth Accretionary Systems in Space and Time (e . . a & e), .136. e a e e a a .31. , .& , . .2002. e e a a

. e ee ea a a . e e aa e e 2-. Geological Magazine 139, 1 13.

e a Geological Society of America Bulletin 105, 15 3. , . . 1 . Ophiolites. e, e -

 $e^{-1} = a^{-1} + b^{-1} + b$ e . Journal of Geological Society, London 149, 56

, . . & . , . 1 4. a caac-ce a a aa a c- c c c a aa a ac aa . Contributions to Miner-

a a a a e a a . Contributions to Miner-alogy and Petrology 86, 54 6. , .& , ...2003. - e - a a ea a e (2) a e e a e e a a, , a a . Ophiolites in Earth History (e . e & . .), . 43 6 . e a e , e a a . 21 .

21. , & , .2011. eee a a e e e a a e e a -e ea e e. Geological Society of America Bulletin 123, 3 411.

, . . & , . . 2015. e a e e e a e a a e, a a e a e a e. Chinese , . ., a a e a e. Chinese Journal of Geology 50, 140 54 (e e

e e. Contributions to Mineralogy and Petrology 140, 2 3 5.

, ., , . .& , .1 1. a a ee e e e a e e, e a -e a ae e . Lithos 27, 25 .

- , . ., , . ., , . & , . . 2011. -caa ca - . Geological Bulletin of China 30, 150 13 (e e a a).
- a e a e ? Geochimica et Cosmochimica Acta 75, 504 2.
- Acta 75, 504 2. , , , , , , , , , . . . & , . . 2001. e a a a e e e e a -a e e e e e e e a -e e . Nature 410, 6 1. , , , , . . & , . 2002. a e e e e a a e e (ea) a a e e e e . . Chemical Geology 182, 22 35. , . . & , . . 1 6. e a a e -e e e a a a a e a a a , a a e e . Journal of Geophysical Research: Solid Earth (1978–2012) 101, 11 31 .

- Earth (1978–2012) 101, 11 31 . , . & , . 2000. ea a a a --e e a a -a a e a a e 2. a -e e a a e a e e - e e e e , e e. Contributions to Mineralogy and Petrology **139**, 20 26.
- a a).
- (e e). Chinese Science Bulletin (Chinese Version) 59, 2213 22.
- e a e e c a e e a e c a e c a e c a c a c c a c a c c a c a c c a c
- Edinburgh: Earth Sciences 91, 1 1 3. , . .& , . . 1 0. a e e a a e a ae e a a . Journal of Petrology 31, 6 1.
- , ., , , . .& , .2003. **a** e**a** e. **a** e. *Earth* ea e a Science Frontier 10, 43 56 (e e a a).
- , . ., , . . & , . 2001. a e a a e a e a a a e e, e a e e a . e .Journal of Petrology 42, 655 1.
- , 16. a a ee-e e e . *Nature* **380**, 23 40.
- , . & . , . 2000. a a e e e e a e ea e e a e e e e e e. Tectonophysics **326**, 255 6.
- ,.«, ae a e **a e**- **e e** . *Lithos* **114**, 1 15.

- , . ., a e, a. Geological Magazine 141, 225 31.
- · ·, and Geoanalytical Research 34, 11 34.
- a ce ce ca a a a ca a c. Chinese Science Bulletin 58, 464 54.
- , . ., , . ., ca acce caa c
- - . Chinese Science Bulletin **55**, 1535 46. , . . 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. e ee e e e e a a 4, 3.
- **274**, 32 355.
- (ea e e a). Geology 23, 51 4. , .1 . Structure of Ophiolites and Dynamics
- of Oceanic Lithosphere. e, e e e a e a e e, 36 . . . 1 . a e e a e e a e e e e a e e e e e a a e e .
- a a).
- & , . . 200 b. e a e a a e a a e, ea e a, Acta Petrologica Sinica 25, 14 4 1 (e e **a** a).
- $A_{40} = A_{3}$, A_{20} , A_{20}
- . Proceedings of the Ocean Drilling Program, Scientific Results, vol. 176 (e . . a a , e&.. ee), .160. ee a-, e a .

- , . ., . , . ., , . & , . . 200. e e e- , e- a a e a e- e e a e a e a **a** e. Chinese Science Bulletin **14**, 21 6 1.

 - , . . 200 . e e a e ea a aa a a e e a a e ea ea ea ea . *Lithos* 100, 14 4 . , . . . 2014. e e e e e e -
 - e. Elements 10, 101 . , & , 2001. a e a a e e, -e e a a -a e e, a a a e ae-Mineralogy and Petrology 141, 36 52.
 - Gondwana Research 24, 3 2 411.
 - Journal of Petrology **37**, 6 3 26.
 - a ca ca ac c , e e a -. e a. Precambrian Research 231, 301 24.
 - Research 192–195, 1 0 20 .
 - , . ., , . .& , .1 1. e e e a eee e e a a. Philosophical Transactions of the Royal
 - Society of London **335**, 3 2.
 - **,** ., e e a a a . Nature 377, 5 5 600.

 - , . ., , . ., , , , , , . & . .2014. $a = a(\sim 440 a)aa$, a = a a = -e = c = aa aa = c = c = a a = c, c = a(c = a)a = c a = a = a = c = ae e . Lithos 206–207, 234 51.
 - e . Reviews of Geophysics 40, 3-1 3-3 .

- a e . Science in China Series D Earth Sciences 52, 1345 5.
- , . . & , . . 1 . e a a e a ea aa a a e a e e . Magmatism in the Ocean Basin (e . . a e & . .), .52 4 . e a e , e a $\frac{42}{2}$ a. 42.
- , , , , & , , 200 . a e e e e e e e e e a ae . Chemical Geology 247, 352 3.

- to Mineralogy and Petrology 133, 1 11.
- *Geology* **114**, 35 51.
- a e e e . Earth-Science Reviews 113, 303 41.
- Geology **20**, 325–43.
- (**a**)? Geoscience Frontiers **5**, 525 36.
- Sciences 32, 102 1 .
- , . ., , . ., , . . & , . . 2013. ac caca a a c c c c c a a a c a c Condugng Research 23, 1316, 41 Gondwana Research 23, 1316 41.
- , . .& , . .2004. a ac a c a a c c c c c a a . Journal of *Geological Society, London* **161**, 33 42.

, . ., , , . ., , ., ., , . ., 200 *a*. - **e a** , ., , . & e a a e a ca c a c c c a a c c a c , a c c a , a c a c c a Intomotional 1 , a ca c c a a. International Journal of Earth Sciences 98, 11 21. , . ., , . ., , ., , ., , .

- , . 1 3. Regional Geology of the Xinjiang Uygur Autonomous Region. e e a -e, .2 145 (e e).
- ., , . ., , . ., , ., , . . & , . .2015. e a a a e a a a a a companya a comp a e e . Journal of Asian Earth Sciences
- 113, 5 .
- , . . & •• e ee **a** Gondwana Research 21, 246 65.
- , , , , .ee

e ee a a e a Chemical Geology 242, 22 3 . , ., , . ., , . ., , . .& , .2006. aea a aa,eae a (a) e e a aae a e a . Acta Geologica Sinica **80**, 254 63 (e e a a). , . ., , . ., , ., & , .2003. **a** e e e 2 a,

Chinese Science Bulletin 48, 2231 5. , . ., , . .& . . 2013. e a e a a e e

e e , e e e e a. Lithos 179, 263 4. a e e , · ·, , , ·,

, . ., , . .& , . .2012. e e e e a e a e a e e e e e a e Journal of Asian *Earth Sciences* **52**, 11 33.

, ., , , . . & a a c, a c a . Acta Petrologica Sinica 24, 1054 5 (

a a). ,.&,.16. e a e a Annual Review of Earth and Planetary Sciences 14, 4 3 5 1.